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Abstract. For complex scalar fieldsφ(x) andφ†(x), we introduce the entangled states‖ξ〉which
are their common eigenvectors. The‖ξ〉 states possessing complete and orthonormal properties are
a field-theoretical generalization of the Einstein–Podolsky–Rosen pair states in quantum mechanics.
Based on the new〈ξ‖ representation, we obtain the complete and orthonormal states‖{q}, r〉, the
common eigenvectors of the charge operator andφ†(x) φ(x), with which the charge lowering and
raising operators can be naturally defined. The applications of our formulation are briefly discussed.

The concept of entanglement has played a key role in some fundamental problems in quantum
mechanics [1–3]. In an entangled quantum state, a measurement performed on one part of the
system provides information on the remaining part, as first pointed out by Einstein, Podolsky
and Rosen (EPR) [4]. Thus, entanglement, though EPR found it to be unbelievable, is essential,
for example, in quantum teleportation [5] and has now been known as a basic feature of quantum
mechanics. In EPR’s original argument, they used the fact that the relative positionQ1 −Q2

and the total momentumP1 +P2 of two particles are permutable operators and therefore have
common eigenstates which should be entangled in the EPR sense. Remarkably, the common
eigenstates|η〉 of compatible operators (Q1−Q2, P1 +P2) and the common eigenstates|ξ〉 of
compatible operators (Q1 +Q2, P1−P2) were explicitly constructed in two-mode Fock space
recently [6]. The construction of the EPR pair states,|η〉 and|ξ〉, motivates us to seek their
field-theoretical generalization.

Our purpose in this paper is twofold. (a) We first reveal that the entanglement involved in
the EPR pair states also exists in the context of the quantum theory of complex scalar fields
(CSF). We will construct the explicit entangled eigenstates‖ξ〉, which are a field-theoretical
generalization of|ξ〉, of the CSFφ(x) andφ†(x) in the Fock space. (b) We then show that from
‖ξ〉, one can project out states‖{q}, r〉 of definite charge. This procedure is similar to that used
in obtaining the conserved-charge coherent states from two-mode canonical coherent states
[7]. The complete and orthonormal states‖{q}, r〉 are shown to be the common eigenvectors
of the charge operator andφ†(x) φ(x), with which the charge lowering and raising operators
can be naturally defined. The applications of this paper are also briefly addressed.

In the CSF theory,φ andφ† are two independent fields. The CSF can be canonically
quantized and split into a positive- and negative-frequency part as [8]

φ(x, t) = φ+ + φ− φ†(x, t) = φ†
+ + φ†

− (1)
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where

φ+ =
∑
p

apfp(x, t) = (φ†
−)

† φ− =
∑
p

b†
pf
∗
p (x, t) = (φ†

+)
† (2)

with [ap, a
†
p′ ] = [bp, b

†
p′ ] = δpp′ , fp(x, t) = (2Vωp)−1/2 ei(p·x−ωpt), ωp =

√
m2 + p2 (m is the

mass of the field quanta) andV is the normalization volume. Consequently,[
φ†

+(x, t), φ−(x
′, t)

] = [φ+(x, t), φ
†
−(x

′, t)
]

=
∑
p

eip·(x−x′)

2Vωp
≡ 1

2
G(x− x′). (3)

The inverse ofG(x− x′) isG−1(x− x′) = V −1∑
p ωp eip·(x−x′), as it satisfies∫

d3y G(x− y)G−1(y − x′) = 1

V

∑
p

eip·(x−x′) = δ(x− x′). (4)

The conjugate fields5(x, t) ≡ ∂tφ
†(x, t) and 5†(x, t) ≡ ∂tφ(x, t). The non-

vanishing equal-time commutation relations are [φ(x, t),5(x′, t)] = iδ(x − x′) and
[φ†(x, t),5†(x′, t)] = iδ(x− x′).

Sinceφ(x) andφ†(x) are commutative and independent of each other, we can construct
their common eigenstates which in the Fock space are given by (from now on we work in the
Schr̈odinger picture, for example,φ(x) ≡ φ(x, t = 0))

‖ξ〉 = [det
(

1
2G
)]−1/2

exp

{∫ ∫
d3x d3x ′G−1(x− x′)[−ξ ∗(x)ξ(x′) + 2ξ(x) φ†

−(x
′)

+2ξ ∗(x) φ−(x ′)− 2φ†
−(x) φ−(x

′)
]}‖00〉 (5)

where the vacuum state of the CSF is annihilated by bothap andb−p: ap|00〉p = b−p|00〉p = 0
and‖00〉 =∏p |00〉p. In fact, by actingφ+(x) [φ†

+(x)] on ‖ξ〉 and using equations (3) and (4),
we are led to

φ+(x)‖ξ〉 = [ξ(x)− φ−(x)]‖ξ〉
φ†

+(x)‖ξ〉 =
[
ξ∗(x)− φ†

−(x)
]‖ξ〉. (6)

Therefore, the‖ξ〉 states are indeed the common eigenvectors ofφ andφ†. The‖ξ〉 state can
also be written in the momentum space. Using equation (2) and the Fourier transformation
ξ(x) = V −1/2∑

p ξp eip·x, we obtain

‖ξ〉 =
∏
p

√
2ωp exp

[
−ωp|ξp|2 +

√
2ωp ξpa

†
p +

√
2ωp ξ

∗
pb

†
−p − a†

pb
†
−p
]
|00〉p ≡

∏
p

|ξp〉. (7)

The simultaneous appearance of botha†
p andb†

−p originates, of course, from the conservation
of momentum.

It is obvious that eachp-mode component of‖ξ〉 in equation (7) is equivalent to the
entangled states|ξ〉 in the two-mode case [6]. Therefore, the newly constructed eigenstates‖ξ〉
are a field-theoretical generalization of|ξ〉, and the entanglement involved in the former occurs
between the positively and negatively charged quanta. In this sense we call‖ξ〉 the entangled
eigenstates (the ‘EPR pair states’) of the CSF. The eigenstates‖ξ〉are also entangled in the sense
that they are not a direct product of eigenstates of two real components,φ1 = (φ+φ†)/

√
2 and

φ2 = i(φ†− φ)/√2, of the CSF. We emphasize that the entangled eigenstates in equation (5)
or (7) are in accordance with the superselection rule [9]. The‖ξ〉 states comprise botha†

p
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andb†
−p acting on the vacuum state in equation (7). They create the positive and negative

quanta simultaneously from the vacuum, and this ensures the conservation law of charge.
The common eigenstates of5 and5† can be similarly constructed and are a field-theoretical
generalization of|η〉 [10].

We can prove the complete and orthonormal properties of‖ξ〉 as follows. From the well
known expression‖00〉〈00‖ = ∏p : e−a

†
pap−b†

−pb−p :, where : : denotes normal ordering, and
the inverse transformations of equation (2), we obtain the normal product forms of the vacuum
state projector‖00〉〈00‖ in terms of the field variables:

‖00〉〈00‖ =: exp

{
−2

∫ ∫
d3x d3x ′G−1(x− x′)[φ†

−(x) φ+(x
′) + φ−(x) φ†

+(x
′)
]}

: . (8)

Using equations (5) and (8), we can prove the completeness relation of‖ξ〉 as[
d2ξ

π

]
‖ξ〉〈ξ‖ = [det

(
1
2G
)]−1

:
∫ [

d2ξ

π

]
exp

[
−2

∫ ∫
d3x d3x ′G−1(x− x′)

×[ξ(x)− φ(x)][ξ ∗(x′)− φ†(x ′)]
]

:= 1. (9)

Here the integrals are of course the functional ones [8, 11]. In arriving at the completeness
relation, we have used the technique of integration within an ordered product (IWOP) of
operators [12].

The Hermitian conjugates of equation (6) are〈ξ‖φ†(x) = ξ ∗(x)〈ξ‖ and 〈ξ‖φ(x) =
ξ(x)〈ξ‖. Thus〈ξ ′‖φ(x)‖ξ〉 = ξ(x)〈ξ ′‖ξ〉 = ξ ′(x)〈ξ ′‖ξ〉and〈ξ ′‖φ†(x)‖ξ〉 = ξ∗(x)〈ξ ′‖ξ〉 =
ξ ′∗(x)〈ξ ′‖ξ〉. It then follows that the eigenvectors‖ξ〉 are orthonormal:

〈ξ ′‖ξ〉 = [π ]δ(2)[ξ ′ − ξ ] (10)

where the functional delta functionδ(2)[ξ ] ≡ δ[ξ ]δ[ξ ∗]. The‖ξ〉 set is therefore qualified to
be a complete and orthonormal representation, the〈ξ‖ representation. One may also use the
IWOP technique to obtain equations (9) and (10) starting from equation (7) since we have∫

d2ξp

π
|ξp〉〈ξp| = 1 〈ξ ′p|ξp〉 = πδ(2)(ξp − ξ ′p) (11)

similar to the|ξ〉 states [6]. The〈ξ‖ representation enables us to define the amplitude and
phase fields ofφ, respectively, as

A(x) ≡
√
φ†φ =

∫ [
d2ξ

π

]
|ξ(x)|‖ξ〉〈ξ‖

eiθ(x) ≡ φ

A
=
∫ [

d2ξ

π

]
ei argξ(x)‖ξ〉〈ξ‖.

(12)

One can therefore regard the amplitudeA and phaseθ of φ, instead ofφ andφ†, as two
independent field degrees of freedom due to the vanishing equal-time commutation relation
[eiθ(x), A(x ′)] = 0. The situation is analogous to the definition of the two-mode phase operator
[13, 14].

Within the quantized theory the charge of the CSF becomes an operator [8]:

Q = i
∫

d3x : (5†φ†−5φ) :=
∑
p

(a†
pap − b†

−pb−p) (13)

where the prescription of normal ordering eliminates an infinite but unobservable vacuum
charge. Note that [8]

[Q,φ(x)] = −φ(x) [
Q,φ†(x)

] = φ†(x) (14)
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we have [Q,φ†(x) φ(x)] = 0. Thus a question naturally arises: what is the
appropriate representation that diagonalizes the charge-number operatorQ andφ†(x) φ(x)

simultaneously?
Since a‖ξ〉 (|ξp〉) state does not have definite charge, thep-mode state of definite charge

qp can be obtained by the following prescription (rp > 0):

|qp, rp〉 ≡ 1

2π

∫ 2π

0
dϕp

√
2rp e−iqpϕp

∣∣ξp = rp eiϕp
〉

= 2
√
ωprp

∑
np=max(0,−qp)

e−ωpr
2
p−a†

pb
†
−p
(
√

2ωp rp)2np+qp√
np!(np + qp)!

|np + qp, np〉 (15)

where |np + qp, np〉 ≡ [np!(np + qp)!]−1/2(a†
p)
np+qp(b

†
−p)np |00〉p and the integration is

performed, using equation (7), over theU(1)-phase which is generated by the charge operator
Q. It is a simple matter to show that

(a†
pap − b†

−pb−p)|qp, rp〉 = qp|qp, rp〉
(ap + b†

−p)(a
†
p + b−p)|qp, rp〉 = 2ωpr

2
p|qp, rp〉

(16)

which means that the|qp, rp〉 states are the common eigenvectors of thep-mode charge operator
Qp ≡ a†

pap−b†
−pb−p and(ap+b†

−p)(a†
p+b−p). This is not surprising since the two operators are

commutative. Remarkably, the|qp, rp〉 set spans a complete and orthonormal representation.
A direct evaluation by using equation (11) yields

∞∑
qp=−∞

∫ ∞
0

drp |qp, rp〉〈qp, rp| = 1

〈q ′p, r ′p|qp, rp〉 = δqpq ′pδ(rp − r ′p)
(17)

which are the complete and orthonormal relations, respectively. This is in sharp contrast
to the properties of thep-mode charge-conserved coherent states which are the common
eigenstates ofQp andapb−p [7, 15]. The charge-conserved coherent states with equal values
of charge are, in general, not orthonormal and they are known to be overcomplete. In
addition, we point out that [ap + b†

−p, a†
p + b−p] = 0. So we have the useful expressions

(ap +b†
−p)|qp, rp〉 =

√
2ωp rp|qp−1, rp〉 and(a†

p +b−p)|qp, rp〉 =
√

2ωp rp|qp + 1, rp〉, which
immediately lead to

e±iθp |qp, rp〉 = |qp ∓ 1, rp〉 (18)

with eiθp ≡ (ap + b†
−p)/[(ap + b†

−p)(a†
p + b−p)]1/2 = (e−iθp

)†
. Hence eiθp (e−iθp ) is the charge

lowering (raising) operator for thep-mode.
It is straightforward to extend the above consideration to infinitely many degrees of

freedom. Define‖{q}, r〉 ≡ ∏
p |qp, rp〉, then from equations (1), (2), (13) and (15), we

see that

Q‖{q}, r〉 =
∑
p

qp‖{q}, r〉 (19)

and

φ(x)‖{q}, r〉 = r(x)‖{q − 1}r〉
φ†(x)‖{q}, r〉 = r∗(x)‖{q + 1}r〉 (20)
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wherer(x) ≡ V −1/2∑
p rp eip·x. Equation (20) immediately gives

φ†(x) φ(x)‖{q}r〉 = |r(x)|2‖{q}, r〉. (21)

The ‖{q}, r〉 states are therefore the common eigenstates ofQ and φ†(x) φ(x). For the
amplitude field operator defined in equation (12),A(x)‖{q}, r〉 = |r(x)|‖{q}, r〉. Similar
to equation (17),‖{q}, r〉 satisfy the functional complete and orthonormal relations:∑

{q}

∫
[dr]‖{q}, r〉〈{q}, r‖ = 1

〈{q ′}r ′‖{q}, r〉 = δ{q}{q ′}δ[r − r ′].
(22)

Thus the‖{q}, r〉 set spans another representation which can be called thecharge-amplitude
representation.

The advantage of the〈{q}, r‖ representation is that within it, the charge lowering and
raising operators can be defined very naturally. As can be seen from equations (12) and (20),
we have

e±iθ‖{q}, r〉 = e±i argr(x)‖{q ∓ 1}r〉 (23)

which mean that the operator eiθ (e−iθ ) reduces (increases) the charge of all modes of the CSF by
one unit. The phase field operator eiθ and its Hermitian conjugate e−iθ thus serve, respectively,
as the charge lowering and raising operators, regardless of the local phases e±i argr(x).

Importantly, it should be stressed that though our formulation is developed for the
CSF, its applications are broader. Note that current EPR experiments rely on the two-
particle entanglement [16], and the experimental realization of three-particle entanglement
was reported only recently [17]. The entanglement involved in the field states opens a new
avenue for the description of entanglement experiments with many-particle and field states.
The fact that there exists the EPR entanglement for the free field statesin the original EPR
senseis striking. This remarkable fact shows thepreciseEPR correlation for the quantized
fields at a fundamental level. The EPR entanglement involved in the field states, together with
the recent demonstration of quantum non-locality for the original EPR states [18, 19], might
imply quantum non-locality for the quantized fields as well.

Moreover, our formulation is applicable to the quantized electromagnetic field. To show
this, it is convenient to use the Riemann–Silberstein complex vector [20] which can be quantized
as

F (x, t) =
∑
k

√
|k|
V
ek
[
ck ei(k·x−|k|t) + d†

k e−i(k·x−|k|t)] (24)

whereck (dk) is the annihilation operator of the left-handed (right-handed) photons. Here
the unit polarization vectorek satisfying|ek|2 = 1 andk × ek = −i|k|ek is related to the
polarization vectore±k for left- and right-handed polarizations ase+

k = ek ande−k = e∗k.
The close resemblance of equation (24) to equation (1) obviously shows the applicability of
our formulation to the quantized electromagnetic field. Very recently, Braunstein and Kimble
[21] proposed an elegant scheme for teleportation of continuous quantum variables by using
squeezed-state entanglement whose limiting case can reduce to the original EPR entanglement.
In fact, the field squeezed states can be naturally discussed in the〈ξ‖ representation [10].
Combined with the Braunstein–Kimble scheme, the EPR states of quantum fields open up the
new possibility for teleportation of many-particle quantum states with continuous spectra.

In conclusion, we have constructed the entangled eigenstates‖ξ〉 of complex scalar fields
φ(x) andφ†(x). The ‖ξ〉 states possess the complete and orthonormal properties and are
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a field-theoretical counterpart of the EPR pair states in quantum mechanics. From the‖ξ〉
states and within the prescription in equation (15), one can project out other complete and
orthonormal states‖{q}r〉, the common eigenstates of the charge operator andφ†(x) φ(x),
with which the charge lowering and raising operators can be naturally defined. Thus we have
provided two new representations (the〈ξ‖ and〈{q}, r‖ representation), which may be useful
in considering the representation and transformation theories of CSF. Thus our formulation
is interesting in its own right. Moreover, the formulation is of conceptual importance in that
it reveals the EPR correlation for the field states in the original EPR sense, and has broader
applications, not merely in the CSF. The generalization of our formulation to the non-Abelian
charged fields still remains a challenge in the near future.
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